

Building Recognizers for
Digital Ink and Gestures

Digital Ink

 Natural medium for pen-based computing
 Pen inputs strokes
 Strokes recorded as lists of X,Y coordinates
 E.g., in Java:

 Point[] aStroke;

 Can be used as data -- handwritten content
 ... or as commands -- gestures to be processed

2

Distinguishing Content from
Commands

 Depends on the set of input devices, but
 generally modal
 Meaning that you’re either in content mode or you’re in command

mode

 Often a button or other model selector to
indicate command mode
 Example: Wacom tablet pen has a mode button

on the barrel
 Temporary switch--only changes mode while

held down, rather than a toggle.

3

Other Options

 Use a special character that disambiguates from content input and
command input
 E.g., graffiti on PalmOS
 “Command stroke” says that

what comes after is meant to
be interpreted as a command.

 Can also have special
“alphabet” of symbols that are unique to commands

 Can also use another interactor (e.g., the keyboard)
 but requires that you put down the pen to enter commands

4

Still More Options

 “Contextually aware” commands
 Interpretation of whether something is a command or not depends

on where it is drawn
 E.g., Igarashi’s Pegasus drawing beautification program

 a scribble in free space is content
 a scribble that multi-crosses another line is interpreted as an erase gesture

5

Why Use Ink as Commands?

 Avoids having to use another interactor as the “command interactor”
 Example: don’t want to have to put down the pen and pick up the

keyboard

 What’s the challenge this with, though?
 The command gestures have to be interpreted by the system
 Needs to be reliable, or undoable/correctable
 In contrast to content:

 For some applications, uninterpreted content ink may be just fine

6

Content Recognizers

 Feature-based recognizers:
 Canonical example: Dean Rubine, The Automatic Recognition of

Gestures, Ph.D. dissertation, CMU 1990.
 “Feature based” recognizer, computes range of metrics such as length,

distance between first and last points, cosine of initial angle, etc
 Compute a feature vector that describes the stroke
 Compare to feature vector derived from training data to determine

match (multidimensional distance function)
 To work well, requires that values of each feature should be normally

distributed within a gesture, and between gestures the values of each
feature should vary greatly

7

Content Recognizers [2]

 “Unistrokes” (a la PalmOS Graffiti)
 Use a custom alphabet with high-disambiguation potential
 Decompose entered strokes into constituent strokes and compare

against template
 E.g., unistrokes uses 5 different strokes written in four different

orientations (0, 45, 90, and 135 degrees)

 Little customizability, but good recognition
results and high data entry speed

 Canonical reference:
 D. Goldberg and C. Richardson, Touch-Typing

with a Stylus. Proceedings of CHI 1993.

8

Content Recognizers [3]

 Waaaaay more complex types of recognizers that are out of the
scope of this class
 E.g., neural net-based, etc.

9

This Lecture

 Focus on recognition techniques suitable for command gestures
 While we can build these using the same techniques used for

content ink, we can also get away with some significantly easier
methods
 Read: “hacks”

 Building general-purpose recognizers suitable for large alphabets
(such as arbitrary text) is outside the scope of this class

 We’ll look at two simple recognizers:
 9-square
 Siger

10

9-square

 Useful for recognizing “Tivoli-like” commands
 Developed at Xerox PARC for use on the Liveboard system

 Liveboard [1992]: 4 foot X 3 foot display wall with pen input

 Used in “real life” meetings over a period of several years, supported
digital ink and natural ink gestures

11

“9 Square” recognizer

 Basic version of algorithm:
1. Take any stroke

2. Compute its bounding box

3. Divide the bounding box into a 9-square tic-tac-toe grid

4. Mark which squares the stroke passes through

5. Compare this with a template

12

1. Original Stroke

13

2. Compute Bounding Box

14

3. Divide Bounding Box into 9
Squares (3x3 grid)

15

4. Mark Squares Through Which
the Stroke Passes

16

1 2 3

4 5 6

7 8 9

 representation: [X, X, X,
 X, 0, 0,
 X, X, X]

5. Compare with Template

17

1 2 3

4 5 6

7 8 9

stroke: [X, X, X,
 X, 0, 0,
 X, X, X]

1 2 3

4 5 6

7 8 9

?

template: [X, X, X,
 X, 0, 0,
 X, X, X]=

Implementing 9-square

 Create set of templates that represent the intersection squares for
the gestures you want to recognize

 Bound the gesture, 9-square it, and create a vector of intersection
squares

 Compare the vector with each template vector to see if a match
occurs

18

Gotchas [1]

 What about long, narrow gestures (like a vertical line?)
 Unpredictable slicing

 A perfectly straight vertical line has a width of 1, impossible to subdivide
 More likely, a narrow but slightly uneven line will cross into and out of

the left and right columns

 Solution: pad the bounding box before subdividing
 Can just pad by a fixed amount, or
 Pad separately in each dimension

 Long vertical shapes may need more padding in the
horizontal dimension

 Long horizontal shapes may need more padding in the
vertical dimension

 Compute a pad factor for each dimension based on
the other

19

Gotchas [2]
 Hard to do some useful shapes, e.g., vertical caret
 Is the correct template

[0, X, 0, [0, X, 0,
 0, X, 0, or.... X, 0, X,
 X, 0, X] X, 0, X]

 ... or other similar templates?
 Inherent ambiguity in matching the

symbol as it is likely to be drawn to
the 9-square template

 Any good solutions?

20

Gotchas [2]
 Hard to do some useful shapes, e.g., vertical caret
 Is the correct template

[0, X, 0, [0, X, 0,
 0, X, 0, or.... X, X, X,
 X, 0, X] X, 0, X]

 ... or other, similar templates?
 Inherent ambiguity in matching the

symbol as it is likely to be drawn to
the 9-square template

 Any good solutions?
 Represent that ambiguity
 Introduce a “don’t care” symbol into the template

21

Don’t Cares

 Use 0 to represent no intersection
 Use X to represent intersection
 Use * to represent don’t cares

 Example: [0, X, 0, [0, X, 0,
 *, *, *, or... *, X, *,
 X, 0, X] X, 0, X]

 Now need custom matching process (simple equivalence testing is
not “smart enough”)

 if stroke[i] == template[i] || template[i] == “*”

22

An Enhancement

 What if we want direction to matter?
 Example:

23

Versus

Directional Nine-Squares

 Use an alternative stroke/template representation that preserves
ordering across the subsquares

 Example:
 top-to-bottom: {3, 2, 1, 4, 7, 8, 9}
 bottom-to-top: {9, 8, 7, 4, 1, 2, 3}

 Can be extended to don’t cares also
 (Treat don’t cares as wild cards in the

matching process)

24

1 2 3

4 5 6

7 8 9

Sample 9-square Gestures

25

... with directional variants of each

Another Simple Recognizer

 9-square is great at recognizing a small set of regular gestures
 ... but other potentially useful gestures are more difficult

 Example: “pigtail” gesture common in
proofreaders’ marks

 Do we need to go to a more complicated
“real” recognizer in order to process these?

 No!

26

The SiGeR Recognizer

 SiGeR: Simple Gesture Recognizer
 Developed by Microsoft Research as a way for users to create

custom gestures for Tablet PCs
 Resources:

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dntablet/html/tbconCuGesRec.asp

 http://sourceforge.net/projects/siger/ (C# implementation)

 Big idea: turn gesture recognition problem into a regular expression
pattern matching problem

27

Basic Algorithm

1. Processes successive points in the stroke

2. Compute a direction for each stroke relative to the previous one,
and output a direction vector of the directions

3. Compare the direction vector to a pattern expression; can even use
standard regular expression matching

28

1. Process Successive Points in
the Stroke

29

2. Compute a direction vector
based on each point

30

U, U, U, RU, RU, RU, RU, L, L, L,
LD, D, D, RD, RD, RD, D, D, D

3. Compare the string to a
directionality template

31

U, U, U, RU, RU, RU, RU, R, R, R,
RD, D, D, LD, LD, LD, D, D, D

Template = [UPS, RIGHTS, DOWNS,
LEFTS, DOWNS]
(defines basic shape of the stroke)

Defining the Template

 Concerned about matching 8 possible pen directions
 RIGHT, UP, LEFT, DOWN, RIGHT-UP, RIGHT-DOWN, LEFT-UP, LEFT-

DOWN

 Template consists of these symbols
 ... plus “grouping” symbols that match more general directions

 UPS matches all things that go up: UP, RIGHT-UP, LEFT-UP
 LEFTS matches all things that go left: LEFT, LEFT-UP, LEFT-DOWN

 The template is then matched against the direction vector by seeing
if the template patterns occur

32

How Robust is This?

 Here’s a gesture that shouldn’t match but may, depending on
implementation

 Why?
 A question mark appears in the

middle of the stroke

 Therefore:
 Important to match the whole stroke, not just part of it!
 Think of the pattern as including ^ and $ (regular expression markers

for beginning of line and end of line) at the first and end

33

How Robust is This?

 But requiring the entire stroke to match the pattern introduces a
new problem

 Can you tell what it is?

34

How Robust is This?

 But requiring the entire stroke to match the pattern introduces a
new problem

 Can you tell what it is?

 Look closely at the question mark
 At the bottom, the stroke jags

off to the left
 Common for the pen to make little

tick marks like this when it comes into
contact with the tablet, or leaves it

35

Solution

 Simply trim the beginning and end points of the vector!
 More generally:

 Ignore small outlier points if the overall shape otherwise conforms to
the shape pattern specified in the template.

36

Implementing SiGeR (one
method)

 Specify some helper constants:
int UP = (1<<0);

int DOWN = (1<<1);

// ... define other constants, as well as unique tokens that represent
// direction classes

int RIGHT_UP = (RIGHT | UP);

int UPS = (UP | RIGHT_UP | LEFT_UP);

 Specify templates in code, using human-readable constants:
int QUESTION_MARK = { UPS, RIGHTS, DOWNS, LEFTS, DOWNS };

37

Implementing SiGeR (continued)

 Create a function buildPatternString() that takes the template and
emits a regexp pattern that will be used to match it

buf.append(“^”); // match the start of input

buf.append(“.{0,2}+”); // consume any character 0-2 times (this gets rid of the noise at the beginning)

for (int i=0 ; i<pattern.length ; i++) {

 switch (pattern[i]) { // emit a unique letter code for each of the 8 directions

 case RIGHT: buf.append(“R+”); break;

 case UP: buf.append(“U+”); break;

 case RIGHT_UP: buf.append(“W+”); break;

 case LEFT_UP: buf.append(“X+”); break;

 // ...

 case UPS: buf.append(“[UWX]+”); break; // combination directions combine letters

 }

}

buf.append(“.{0,2}+);

buf.append(“$”);

38

Implementing SiGeR (Cont’d)

 Write a function buildDirectionVector() that takes an input stroke
and returns a direction vector
 Compare each point to the point previous to it
 Emit a symbol to represent whether the movement is UP, RIGHT, etc.
 (using all of the 8 ordinal directions)

 Use the Java regular expression library to match strokes to patterns!
import java.util.regex.*;

if (questionMarkPattern.matcher(strokeString).find()) {

 // it’s a question mark!

}

39

More on SiGeR

 SiGeR actually does much more than this; we’re just implementing
the most basic parts of it here.

 Example: collects statistical information about strokes that can be
used to disambiguate them
 Percentage of the stroke moving right, distance between the start and

end points, etc.
 Can help disambiguate a ring from a square

 Also computes various other features
 Are shapes open or shut, pen velocity, etc.
 Can tweak patterns by requiring certain features

40

